Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486008

RESUMO

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Assuntos
Fucus , Polissacarídeos , Alga Marinha , Alga Marinha/química , Fucus/química , Anticoagulantes , Solventes
2.
Mar Drugs ; 20(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547919

RESUMO

Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or ß-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.


Assuntos
Glucanos , Humanos , Glucanos/farmacologia , Polissacarídeos/farmacologia , Preparações Farmacêuticas
3.
Insects ; 13(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35886771

RESUMO

Arthropod control mechanisms are a vital part of public health measures around the world as many insect species serve as vectors for devastating human diseases. Aedes aegypti (Linnaeus, 1762) is a widely distributed, medically important mosquito species that transmits viruses such as yellow fever, Dengue, and Zika. Many traditional control mechanisms have become less effective due to insecticide resistance or exhibit unwanted off-target effects, and, consequently, there is a need for novel solutions. The use of attractive toxic sugar baits (ATSBs) has increased in recent years, though the toxic elements are often harmful to humans and other vertebrates. Therefore, we are investigating propylene glycol, a substance that is generally regarded as safe (GRAS) for human consumption. Using a series of feeding assays, we found that propylene glycol is highly toxic to Ae. aegypti adults and a single day of exposure significantly reduces the survivorship of test populations compared with controls. The effects are more pronounced in males, drastically reducing their survivorship after one day of consumption. Additionally, the consumption of propylene glycol reduced the survivorship of two prominent disease vectors: Aedes albopictus (Skuse, 1894) and Culex pipiens (Linnaeus, 1758). These findings indicate that propylene glycol could be used as a safe and effective alternative to pesticides in an ATSB system.

4.
J Colloid Interface Sci ; 298(1): 154-61, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16414061

RESUMO

The characterisation of a novel amphiphilic material, Alg-C4, produced from butanol linked by esterification to alginate is presented. The novel derivative retains the gelling and non-toxic properties of native alginate. FTIR spectra of Alg-C4 contained the characteristic hydroxyl and carboxyl bands, but also featured additional peaks at 1736 and 1134 cm(-1), indicating the presence of ester bonds. NMR studies showed the presence of butyl groups. The endothermic peak and exothermic peak present in the DSC thermogram of native alginate were also apparent in the Alg-C4 thermogram, but had shifted to lower temperatures (from 106 to 87 degrees C and from 254 to 247 degrees C, respectively). In addition, the exothermic peak was significantly reduced for Alg-C4 (5 mW compared to 20 mW in native alginate). Scanning electron microscopy was used to examine surface topography. The native alginate beads appeared smooth while Alg-C4 beads had a different, rougher appearance. Using circular dichroism it was found that the ratio of mannuronic to guluronic residues in the Alg-C4 was markedly increased compared to the native alginate (1.33 to 2.47), suggesting the preferential esterification of butanol to the guluronic residues. Exposure of ovarian granulosa cells in vitro to the Alg-C4 material demonstrated that granulosa cell viability (MTT test) was unchanged when compared to native alginate, which is regarded as non-toxic. The novel material is very stable, giving identical FTIR, DSC and gelling performance after 12 months storage at temperatures ranging from 10 to 20 degrees C. The data support the successful preparation of a stable modified alginate with characteristic hydrophilic properties and, in addition, a novel hydrophobic character.


Assuntos
Alginatos/química , Células da Granulosa/citologia , Teste de Materiais , Alginatos/farmacologia , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dicroísmo Circular , Feminino , Géis/química , Géis/farmacologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...